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Incorporation of excluded-volume correlations into Poisson-Boltzmann theory
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We investigate the effect of excluded-volume interactions on the electrolyte distribution around a charged
macroion. First, we introduce a criterion for determining when hard-core effects should be taken into account
beyond standard mean-field Poisson-Boltzm#&RB) theory. Next, we demonstrate that several commonly
proposed local-density-functional approaches for excluded-volume interactions cannot be used for this pur-
pose. Instead, we employ a nonlocal excess free energy by using a simple constant-weight approach. We
compare the ion distribution and osmotic pressure predicted by this theory with Monte Carlo simulations. They
agree very well for weakly developed correlations and give the correct layering effect for stronger ones. In all
investigated cases our simple weighted-density theory yields more realistic results than the standard PB ap-
proach, whereas all local density theories do not improve on the PB density profiles, but on the contrary,
deviate even more from the simulation results.
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[. INTRODUCTION can be obtained in the case of a spherical geometry. The
) ) ) ) major flaw of this mean-field approach is that it neglects all
Understanding the behavior of charged macroions in sogorrelations between the ions. For a long time, integral-
lution is an important problem in fundamental sciefitfas  equation theories have been developed to adequately de-
well as in industrial[2] and biological applicationg3].  scribe dense systems of electrolytes, and recently field theo-
Charged stabilized colloidal dispersions are present in paintsies have become very popular in calculating correlation
inks, and pharmaceutical products and are used in the fabr¢orrections to the mean field PB approach; see, e.g., Refs.
cation of nanostructured materiald—6]. These systems [3,18,19 for overviews. However, since the treatment of size
serve also as a primitive model for the crowded cellular eneffects is mixed with the electrostatic correlations, in many
vironment that represents numerous biomacromolecules ar&pproaches it becomes difficult to identify the role of each
cellular polymerg7,8]. What all the applications above have effect. And finally integral equation theories work well at
in common is that when a charged macroion is immersed ifligh densities when excluded-volume contributions are very
an electrolyte solution, it is surrounded by counterions tostrong, whereas they are problematic in the low-density re-
balance the surface charge. The charged macroion surfa8¢me.

along with the neutralizing diffuse layer of counterions is, |t would therefore be desirable to have a theoretical
usually referred to as the electric double layer, the underff@mework which retains the simplicity of the early attempts,
standing of which is crucial for describing the behavior of PUt @lso accommodates correlation effects—something that

such systems. For instance, the stability of colloidal disperS@" P& dor}e within d(;nsity fl.J_”C“?”a' t_heorifes. Itis possible

; ' o , to rigorously rewrite the partition function of, say, a system
sion depends on the distribution of small ions around the . . iof20], .
colloid. The electrophoretic mobility of the solution also can of charged colloids, as a density functiof20], in which the

. . . ) O contribution beyond the mean field is included as an additive
be rationalized in terms of the lon d|str|bu'§|c§9—_12_] and ._correlation correction to the free-energy density. The func-
most of the electrochemical reactions occur in this interfacial; ;1 form of this correction is unknown and one has to use
rengn[13]. . there has b derable off 42 reasonable ansatz for it. The spirit is very similar to the

As a result, there has been a considerable effort t0 d&ynjamenty| problem of integral equations, where one also
scribe the density profile around the macroion for dlf“ferenthaS to make an educated guésamely, the closure relation
macroion geometries. The earliest theory that had significarﬁowever in the case of a function:':ll this involves a free-
success was the Poisson-Boltzmaf) approach. Its ver- energy density expression rather than a relation between two-

sions for planar geometry, the so-called Gouy-Chapma%nd three-point functions. It thus relies on a different kind of
theory[ 14,15, can be solved exactly. It also has an analyti-jy ition and thus permits some complementary insight.

cal solution for an infinitely long linear macroion confined to A number of density-functional prescriptions for taking

a cylindrical cell[16,17], whereas only a numerical solution ), ‘size and electrostatic correlations into account have
been proposef21-24. These theories are able to reproduce
to some extent the density profile of charged systems. How-

*Electronic address: antypov@mpip-mainz.mpg.de ever, since they treat both size and electrostatic correlations
"Electronic address: barbosa@if.ufrgs.br together, the origin of the result is not clear. Recently we
*Electronic address: c.holm@fias.uni-frankfurt.de adopted a different approach. We studied systems of point-
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like counteriongtherefore no size effegteind addressed the
question of when the electrostatic correlations become rel-
evant. For treating these correlations we proposed the
Debye-Hickel hole-cavity function@®5,2€. This theory re-

lies on a Debye-Huckel treatment of the one-component
plasma(OCP [27-29, in which the short-distance failure of
linearization is overcome by postulating a correlation hole.
Since beyond a certain density the resulting OCP free-energy
density is a concave function of density, this favors the de-
velopment of inhomogeneities. In the pure OCP these are
balanced by the homogeneously charged background. How-
ever, if one uses the OCP free-energy density as a correlation
correction to the mean-field functional describing the double
layer at a charged surface, one has all the charge opposite to
the counterions located on that surface, rather than homoge- . . , ,
neously distributed as a stabilizing background. The consge- FIG. 1. Colloidal ceII_ model. The system s defined by five
quence is that the double layer becomes unstable and all o ePendent parameters: number of counteridhsumber of salt
collapse onto the surface, an effect which has been terme nIS’NZS’ and tﬂree Chargptinsnc S'Z?R’ T nda measured in units
“structural catastrophe[30,31. To prevent this effect we gv”. See the Appendix for more details.
introduced a spherical exclusion region where no back- ) )
ground can be found. The prescription for finding the size of/@/€ncev, andN=Z/v of them provide the neutrality of the
such an exclusion serves both to keep the theory selicell. The sqlvent is modeled as a uniform dielectric back-
consistent and to establish the range of validity of the pgground of dielectric constar¥, and the strength of the elec-
approach. Comparisons of the ionic charge distributiorfroStatic interactions is defined by Bjerrum length

around a charged cylinder and a charged sphere showed a 5
very good agreement with the simulations for both monova- lg= q—, (1)
lent and trivalent counterior[£6]. AmegekgT

Having studied how to take into account the electrostatic

correlations, we address in this paper the relevance Ov[vhereq is the unit charge. In the nonzero salt casgposi-

excluded-volume correlations. We present a validity criterion’ V€ and N, negative salt ions are alsq included. Here we
ssume that all ions have the same size and valence as the

for the PB approach by constructing a parameter whos& . oo e )
value approximately indicates when excluded-volume correfoUnNterions. The average ch_arge distribution is described by
lations are expected to become relevant. We then test sevellgFaI densmesp__(r) for t_he coions and,(r) f_or the counte-
local density approaches that have been advod@2(®3, rions and positive _salt ions. These are definedrferr <R,
demonstrating that they all fail to take the size correlationdVNeréro=rc+a/2 is the distance of closest approach be-

into account and that they even lead to an instability of théWeen the macroion and particles aRetR.—~a/2 (see Fig.

solution beyond a certain ion size. In order to circumventl): Therefon_a,d)e, the volume fracgon_of the electrolyte in
this, a weighted density functional based on a simplified® Céll confined betweerf andR is given by

Tarazona approacfB4—3§ is introduced. Our results are a3(N + 2Ny

compared with Monte Carl@MC) simulations, showing very = 3 3 (2
good agreement for the cases of moderately developed hard- 8(@ —ro)

core correlations and even for strongly electrostatically inter- . ) . .
acting systems in both zero salt and nonzero salt cases. The effective surface charge densityshould be defined in

The remainder of the paper is organized as follows. irterms ofr rather tharr —i.e.,ao=2Z/(4wrg). This will be used

Sec. Il we discuss validity of the PB approach for a colloidall@t€r when defining the plasma parameter of the system.

system with non-point-like counterions and show how the The central task of'a density-functional theory is to derive
size effect can be incorporated into the model. Details of th&" @nalytical expression for the free-Helmholtz-energy func-
used numerical methods are given in Sec. Ill. These are folional that upon minimization gives the density profiles of

lowed by the results and discussions presented in Sec. 1€ frée ions in solution. Its simplest form is given by the

and our conclusion in Sec. V. Poisson-Boltzmann functional: namely
Il. SIZE CORRELATIONS WITHIN DENSITY- FPB=f d®r (kg TN, (N){In[n,(r)\*] = 1} + kg Tr_(r)
FUNCTIONAL THEORY ,
X{N[n_(r)N°] = 1} + fe(r)), (3

Consider a spherical colloid of radius and negative
chargeZ, which is located in the center of a spherical cell of which includes the translational entropy of the id¢Rds the
radiusR,. This cell represents a bulk colloidal solution with thermal de Broglie wavelengttand all electrostatic interac-
colloid volume fraction ¢=(r./R.)>. The counterions are tions represented by.(r). The electrostatic interactions
taken as positively charged hard spheres of diameetend  within the mean-field approximation are given by

061106-2



INCORPORATION OF EXCLUDED-VOLUME.. PHYSICAL REVIEW E 71, 061106(2005

fe(r) =van,(r) = n_(r)Ju(r), (4)  PB cell for which the contact density is known analytically.

) ) . . Since electrostatic correlations were not taken into account,
wherey(r) is the total electrostatic potential created at posi-ye do not expect this simple analysis to hold fog,= 2.

tion (r) by the fixed macroion and all ions together. The Beyond this value, the force-distance curves between
minimization of Eq.(3) with respect taw(r) andn_(r) gives  charged plates cease to be monotonic, and beybBgd
the Boltzmann density distributions =2.45 attractions even between like charged macroions can
n,(r) = 0™ Auair) (5) occur[3?]. These effects are Fhe resu_lts of corrglati_ons be-
* * ’ tween different double layer@ike, for instance, ion inter-
where parametens? andn® are defined by the charge neu- locking[38,43) that are stronger than the size effects we are
trality condition. In spherical geometry, E() together with  describing here. Note that E(B) is designed to give a limit

the Poisson equation of validity of the mean-field approach. For high ionic radius
4 ¢ can become larger than 1, losing its relation to the actual
__ 4w volume fraction in the system.
V2yd(r) = - n.(r) - n_(r 6 , Y . .
W) € [n.(0) (0] © Correlations can be included in the PB model by adding

" . to the PB free ener an excess free-energy term,
and the boundary conditions atry andr=R comprises a 9 ee 9y

fully defined Poisson-Boltzmann problem. The problem with F=Fpg+Fey 9
this approach is that the ions are considered as point charg ?I i . :

in some average electric field and both electrostatic ani- € eXCess free enerdy, or|g!nz_;\tes from mternal_lnt_erac-_
excluded-volume correlations between them are not takefONS Within the system, and it is unknown. In principle, it
into account. When do these correlations matter? Comparing‘:‘n.account fo_r both the hard-core repulsion and the electro-
the PB predictions to simulation results, one has found ou atic correlations. Since we want to test the excluded-

that, for pointlike ions, electrostatic correlations become reI-VOIume effects within the range of ionic strength in which

evant when the plasma parameféy,= V,?szg becomes they overcome the electrostatic correlations, the latter will be
neglected within our approach.

larger than 1[25,26,37-4Q Here we address the question There are a number of functionals which can be used to
under what condition the excluded-volume effects become . . L ;
significant. For a uniform hard-sphere liquid we know that"jClude hgrq-core effects in gnn‘orm I'ql.“ds .Of a given den-
the radial distribution function changes from monotonicallySlty n. Within the local density approximatioLDA) one

decaying to nonmonotonic at volume fractions of the ordefa" choose one of these free-energy density expressions,

of ¢=0.2, which will be the reference volume fraction in feln], and replace the uniform density by a local one so that
our further estimates. In the case of confined liquids, ionéhe total excess free energy reads

tend to concentrate close to the surface and their concentra-

tion at the surface, especially in charged systems, may be Fex= kBTf d*rn(r)fe,[n(r)]. (10
much higher than that in the bu[k1]. Therefore, to access

the hard-core effects one should consider the average volunfr our system we can tak&r)=n,(r)+n_(r) which means
fraction within the first layer of counterions close to the col- that the hard-core effects are treated identically for both posi-
loid surface. Since the colloid is much larger than the ions, itive and negative ions. The idea behind E#0) is quite
can be approximated agor simplicity the salt is not in-  simple. A particle af is supposed to be affected by only the

cluded particles around it, in a range given by the interaction. If the
2 ra range of the interparticle interaction is much smaller than the

¢S:E Npg(X)dXx, (7)  typical length for variations im(r), the system can be di-
6 Jo vided into small subvolumes of nearly constant density and

each of them can be treated as part of a homogeneous sys-
tem. If we take ions as charged hard spheres, we can use the
free-energy density derived, for example, from the

wherenpg(x)€3=T"5,/ m(2xI'3,+1)? is the exact solution ob-
tained in the planar geometf$4,15,43. Herex=x/{, where

£=1gv?. After integration we find that the volume fraction Carnahan-StarlingCS equation of staté44]: namely
close to the macroion is given by

A, o fedorn) = 2030
S 3@erza+1)’

R where ¢(r)=man(r)/6 is the volume fraction occupied by
where a=a/¢. Then, for $;<0.2, there are only weakly the free ions. For denser liquids, the accuracy might be im-
developed excluded-volume correlations, and the PB approved by using the more precise virial expansion for the

proximation should be still valid. For larger values@fwe  percus-Yevick theory for hard sphelfes]: namely,
expect to see some layering effects close to surfaces. This

criterion is strictly valid only for a planar geometry, but is fur[d(r)]=[4(r) + 5p(r)? + 6.12(r)%+ 7.02(r)*
expected to approximately hold for sufficiently large spheri- +7 54942 6 12

cal or cylindrical macroions where the curvature effects -9054(r)” +9.42084(r)"]. (12
(«1/R) are negligible. An analogous formula which takes theThe last two expressions agree up to second order in the
curvature into account can also be derived for a cylindricalocal volume fractiong(r).

(11

S
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A simple form of F,, can also be derived from the free- @ SF 1]
volume (fv) expression for a lattice gd82,33: namely, cH(r) = on()
1
Fr1= kBTf d3f[— - n(f)}m[ 1-n(na’)], (13 8F N
& (e )= 2 rehl (17)
on(r)on(r’)

wherea is the lattice spacing. With this form of functional

the excluded-volume effects can be explicitly incorporated In the approach of Tarazore al.[35,36,41 one assumes

into the PB equation. However, its density expansion is difthat the weight itself is also density dependent and can be

ferent from that of a hard sphere. Another expression basegixpanded in powers of the weighted density as follows:

on the free-volume concept which can be found in [R&6), T — — 2
w([r =r']) = wo(r) +wy (r)n(r) + wy(r)n(r)®+ - -

Fio=— kBTf d3rn(r)ln<1 - %) , (14 (18)

If we substitute this expression into the direct correlation

gives lower-order density terms similar to E¢EL) and(12).  function in Eq.(17), the resulting expansion can be set equal

The assumption of smooth variationsnif) being within  to the direct correlation function of a uniform hard-sphere
the characteristic range of hard-core interactions is only validluid [52]. This way it is possible to obtain the weight func-
for sufficiently small ionic diametera. Consequently, as we tion that up to second order is given [35,36,41
will show later, all the functionals above underestimate the 3
densities close to the colloid and completely fail to give the Wo(r) = —0[a-r], (19
correct density profile in the more interesting cases where 4ma
stronger variations im(r) are observed. Moreover, all ex-
pressions above have a singularity at a certain value of vol-
ume fraction. This reflects the fact that the bulk density can-
not exceed some upper limit. If a local density is higher than

2
wy(r) = {0.475 ~0.648 + o.11:<5) } (r<a)
a a

that—for example, due to a charged surface—the local den- a r r\2
sity functional does not converge and no density profile can {0-288; -0.924 + 0-763 - 0187(;) }
be obtained.
In order to circumvent the failure of the local density (a<r<?2a)
approach, a number of weighted-density approaches
(WDA's) have been proposeB4-36,47-50 Initially the =0 (r>2a), (20
new methods were developed for the description of neutral
hard-sphere solutions. Stimulated by the success of the WDA 5mad r r\2
for neutral systems, some rather complex and involved meth- Wo(r) = 144 {6 - 125 + 5(;) } r<a

ods have already been proposed for charged suspensions
[21,22,5]. The prescription we have followed here is in the =0 (r>a) (21)
spirit of the generalized van der Waals theory of Nordholm B '

and co-workerg50]. We represent the nonlocality of the Since our aim is not to precisely describe the hard-sphere
free-energy density functional through a coarse-grained dereffects but just to access their relevance, we will employ the
sity distribution n(r). The weighted density is a nonlocal simplest form of the weight function that is the first term in
functional of the local densityi(r). This can be pictured as a Eg.(18) or a constant weighH50] given by Eq.(19). We will
mean density around pointaveraged over a volume related refer to this weight as WDAO whereas the weight defined by
to the range of the interactions. In this context, the localEgs. (19)—(21) will be called WDA2 and will be used to
density in Eq.(10) is replaced by some weighted density validate our results. For a pure hard-sphere fluid, WDAO

n(r): namely, reproduces the discontinuity in the direct correlation function
predicted by Percus and Yeviftk6,53. However, it overes-
FexszTJ d*rn(n)f[nn)], (15) timates th('e.range of the correlation function, _especially at
high densities, when compared to the density-dependent

weights [21,34 or to direction-dependent weights
[22,49,51. Having this in mind, we will concentrate on the
_ systems for which size plays a relevant role but the differ-
n(r)=f d*r'w(|r = r’[)n(|r']). (16)  ences between the constant weight and more sophisticated
approaches do not affect our main conclusions.
The connection between the real system and the approxi- Measuring all lengths in units of=1zv? reveals that the
mated functional comes from the weight functiefir —r’|),  full partition function of our cell model depends on five sys-
which should be chosen to give reasonable direct correlatiotem parameters. The observables—for example, the reduced
functions which are functional derivatives &%.[n]. The density profilef(r)=n(r)¢3>—remain constant under rescal-
most important are the first- and second-order correlatioing which does not change the following quantities: the num-
functions, defined as ber of counterionsN=Z/v, the number of salt ions\, the

where
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reduced distance of closest approaGsry/€, therg/Rra-  tion over a spherical shell of radiusand using the Gauss
tio, and the reduced ion diamet@ra/ ¢ (see the Appendjx  theorem, an integro-differential equation for the electric field
The same holds for PB theory and is also true for our WDAE(r) can be obtained. Consequently, the optimum density
theory. For the WDA it implies that both the WDA free- profile can be obtained from the numerical iteration of this
energy correction and the weight function have to obey thiquation until convergence is achieved.

restriction.

C. Monte Carlo functional minimization

Ill. NUMERICAL METHODS
Within this approach the ion position is described only by

In this section we give details of the numerical methodsits distance from the colloid,, and this uniquely defines the
used to study the cell system described in Sec. Il. Threelensity distributionn(r). Each MC step consists of moving
different ways were employed to find the ion distribution in an ion to a new trial position,<<r <R. This move is either
the cell. The first one was a direct Monte Carlo simulation ofaccepted or rejected with probabilifg4]
the cell model which gave us reference data to test the the- .
oretical results. The density profile minimizing a given free- 7 =min[1,exd- BAF)], (29

energy functional was obtained using numerical iteration Unyhere AF is the free energy difference after and before the
til it converged to the equilibrium charge distribution. pove and it is explicitly given by the functional we mini-
Another way of minimizing the functional was by Monte mjze This method was found to be more stable and worked
Carlo sampling. Some technical details of these three methnch faster than the iterative procedure, though the final
ods are summarized below. result did not depend on the numerical approach used.

A. Monte Carlo simulation
IV. RESULTS AND DISCUSSION

Within this approach we simulate the cell model exactly ) ) ) )
as it is—all ions are taken as charged hard spheres of diam- In this section we compare how well the different density-
etera confined between two spherical shells of ragiiand ~ functional approaches described in Sec. Il capture the
R.. To gather the statistics of charge distribution the ions ar&xcluded-volume interactions. First, we apply numerical
moved around the cell and a single-ion move is either actechniques described in Sec. Il to two colloidal systems al-

cepted or rejected according to the usual Metropolis probteady studied in the literatuf@3]. Then we perform a sys-
ability: tematic analysis of hard-core effects by investigating a num-

_ ber of different systems with and without added salt.
m=min[1,exd- BAE)], (22 We start from considering two salt-free systems which

. : . were also used if33] to study the excluded-volume effect in
where AE is the difference between the system internal en olloidal solutions. In both systemy=50 A, R=100 A, a

ergy after and before the move. Since the density profile i§_7 h . R
highly anisotropic, a combination of two types of moves was, 10 A, andl,=7 A. The number of monovalent ions is dif-

found to improve the efficiency of the sampling. An ion wasfﬁrerlllt' tantdh |tt|sl|\l:2(§)0f|n szyésggn(a) andN:SOIS In s¥fstetm
either inserted at a random position in the cell or randoml ). Note that already for Ions Some packing eflects are

displaced within a cube centered at its current position. Thgxpe_cted_to _be seen because-0.25. I_:lgure 2 ShOWS. the lon
former allowed for efficient exploration of low-density re- density distribution close to the colloid obtained using differ-
gions, whereas the latter proved to be efficient close to th rgapgrtohacr':/?(s: for bo(lalz and(bt). Comparllsotr;] bte:]weden the
colloid where a successful insertion of an ion could be a rar¢ > and the CUrVes lor sys ?(B) reveass that hard-core
event due to the high packing fraction. The frequency mrepulsmn decreases condensation by pushing ions away from

) the oth I the displ rIrpe colloi_d._ Th_is lgffect is captu'red well by the WDA,
using one or e Otner move as Well as e displaceme Wwhereas it is significantly overestimated by all LDAs—the

i I 0,
range were adjusted to give an about 50% acceptance rate[')redicted contact densities are too low. The highest packing
) _ L fraction achieved in LDA calculations for syste(a) was
B. lterative functional minimization below the critical value and the equations converged.
When minimizing a functional containing a nonzero cor-  In the case of 500 ions, the LDA with functional given by

relation term, Eq.(5) becomes dependent on the excessEq. (13) was found to be numerically unstable. The iterative

chemical potential functional minimization failed to converge, while some con-
vergence could be still achieved by explicitly limiting the
wr) = m (23) highest density a3 in the MC sampling of the functional.
- on,(r) The result, however, depended on the number of bins and
and reads therefore was not physical. A plateau close to the colloid, as

seen in33], was observed only for relatively large bin sizes,
n.(r) = ngezqug//(r)—ﬁﬂiyrr)' (24) while smaller bins resulted in a s_awlike density.protiimt
= = shown herg The other LDA's, while still converging, over-
Once the expressions fai$* are derived for a given func- estimated hard-core effects and also resulted in unphysical
tional, we can find the ion distribution which satisfies bothprofiles. Moreover, all local approaches missed the layering
Poisson equation and E4). Integrating the Poisson equa- clearly captured by WDAO and observed in simulations at
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FIG. 2. lon distribution close to the colloid surface measured in systemsyith0 A, R=100 A,a=10 A, andig=7 A and containing
(@) N=200 and(b) N=500 monovalent ionéunits ofn(r) are A3). Each curve corresponds to a particular method used: MC is the result of
the Monte Carlo simulationfcs F,;;, F,1, andFy,, are obtained using the LDA with a form of the excess free energy given by Egs.
(11)—(14), correspondingly; WDAO is the constant-weight curve and PB is the numerical solution of PB equation without any hard-core
corrections.

distancea from the colloidal surfac¢Fig. 2(b)]. pute the osmotic pressure. In real systems this pressure also
Below we consider a model system in which parameterslepends on correlations between ions of different cells,
ro and R=>5r, are kept fixed, whereas the ion size and thesomething which is not taken into account within the cell
Bjerrum length are varied. The cell containindg=100 model approximation. So by pressure we refer to the pres-
monovalent ions of size ranging betweenr@ta<0.8is  sure exerted on the rigid wall at=R of our cell model.
studied at four Bjerrum lengths @ 0.2y, 0.3y, and 0.4,.  Within the simulations, the pressure is give#2] by the
These correspond to the plasma parametex<@f<2.0 contact density at=R:
which enables us to investigate hard-core effects in systems
with weak, moderate, and strong electrostatic correlations. I1=kgTn(R). (26)
The paramete calculated for each of these 32 systems and
given in Table | predicts that, at all Bjerrum lengths, the size For the density-functional approach, this exact expression
correlations are expected to be seen for ion s@e9.%,  should be correctedi55] to recover the free-energy func-
where ¢, is already greater than 0.2. tional after integrating pressure over the volume. The correc-
The Monte Carlo data show that, indeed, the ion densityion term is generally small, and for simplicity we will di-
profile is concave fom=0.1r, anda=0.2r, but develops a rectly compare contact densities predicted by different
convex region at a distance abaufrom the colloid surface methods. Figure 4 shows both the colloid contact density
for larger ion sizes at all four Bjerrum lengths. This indicatesn(fo) and boundary densitg(R) given by the Monte Carlo
some packing taking place which is well captured by gyr  Simulations and different local and nonlocal density ap-
criterion. Figure 3 shows both the reference Monte Carlo an@roaches for systems at fixed Bjerrum lenggk 0.1rq (I'pq
WDAO density profiles calculated for different ion sizes at=0.5 as a function of the ionic diameter The colloid con-
fixed Bjerrum lengthlg=0.2r, (I',4=1.0). The development tact density is informative of how well a certain method
of layering with increasing the ion size is well captured byworks at the most packed region of the system and can also
the nonlocal-functional approach, whereas none of thée related to the pressure. Figuréo@shows that the local
LDA's exhibits any layering and therefore are not shown inapproaches underestimangr,) at high ionic radius when
Fig. 3. compared to the simulations. We found that even for small
Another way of checking how well correlations are cap-ionic sizes the PB density profile was closer to the MC ref-
tured by a particular excess free-energy functional is to comerence data than the results of any of the locally “improved”

TABLE |. Parameterps of different ionic sizegcolumnsg, Bjerrum(rows) lengths, and plasma parameter
(rows). Both Bjerrum lengthdg and ion sizes are given in units of ;. Packing effects are expected to be
seen in those systems for whiely>0.2. Unrealistically high values ab observed for large ions indicate
inapplicability of PB theory and failure of the LDA for these systems.

la/ro (Tog)| alrg— 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1(0.5 001 008 023 044 074 1.13 159 213
0.2 (1.0 0.02 0.11 028 053 087 1.29 179 237
0.3(1.5 003 013 031 057  0.92 1.35 1.86 246
0.4 (2.0 003 013 032 059  0.95 1.38 191 251
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FIG. 3. lon distribution close to the colloid surface measured in systems with plasma par@iget&r0. Odd(a) and even(b) ionic
diameters are shown separately for sake of clarity. Only WDAO curves are marked while all MC curves are presented as solid lines and can
be identified by the corresponding closest dashed WDAO curve. All distances are measured in ionic diameters, so the formation of the second
layer of counterions is always expected to be around 1. The units of number densn'gﬁ. are

functionals. Moreover, the limitation of the local approach isdominant effec{26], and significant deviations to PB theory
illustrated by the failure of the LDA's to converge at large and also to our WDA corrected DFT should arise due to
(no data are shown for large ion8oth WDA's we used here electrostatic correlations, which we did not account for.
give consistent results when compared to MC simulations. However, under the investigated circumstances, the ionic
Now, we concentrate on the case of relatively large ionsize plays a more relevant role. The hard-core effects lead to
of diametersa= 0.4r,, for which layering is clearly observed. packing effects that overcompensate the electrostatic corre-
According to theg; criterion, the density profiles of such lations. Fora=0.4r,, the density profiles are well captured
systems should deviate from PB theory and the hard-corBy WDAO, which is always much closer to the MC data than
interactions can be even more significant than the electrostato the PB resultnot shown here However, fora=0.6r, the

ics in some cases. Figure 5 shows the integrated ion fractiogtructure of packing becomes importantiag=2.0. For this
) system, the WDA2 weight improves the result, showing that
1
P(r)==
m=x]

the deviation between the simulations and the constant-
0

drdmr2n(r) (27)

weight WDAQO is not due to the electrostatic correlations but
rather to hard-core effects. Beyond this point a more sophis-
for systems with ionic diameters fixed @ a=0.4o and(b) ticated functional should be used to capture the local pack-
a=0.6rq for plasma parametdf,4=0.5, 1.0, and 2.0. Clearly, ing.

a larger plasma parameter leads to an increased condensationin principle, the addition of salt can lead to new correla-
(the curves are shifted ip-an effect which is governed by tions due to ion-ion correlations and screening. For high
the electrostatics and also present in PB theory. One coulélectrostatic salt coupling$s=¢/d, whered is the distance
expect that for higH’,y electrostatic correlations would be a of closest approach of ion and coion, ion clusters can also

1.6x10° 1.8x107
1.4x10% 1.7x107 -
1.6x107 -
1.2x10°
1.5x107 |
1.0x10°5 | 1.4x107
iro) nR) "~
8.0x10% b 1.3x107 +
1.2x107 +
6.0x10°
1.1x107 +
_6 L
4.0x10 1ox107 |
9.0x108

2.0x10°6 . . . . . . .
0 01 02 03 04 05 06 07 08

a (units of ry)

01 02 03 9.4 05 06 07 0.8 0
a (units of ry)

FIG. 4. Contact densitya) n(ry) and boundary densitfh) n(R) predicted for systems with,3=0.5 by different methods as a function
of ionic diameter(the number density is measured in unitsrgﬂ‘). All theories ata=0 are identical to PB theory, which slightly underes-
timates the contact density due to ignoring electrostatic correlations. This effect reduces as the ion size increases. The legend is organized
similar to that of Fig. 2 with one more line WDA2 corresponding to the weight by Tarazona given by1Byg21). There is a slight
positive difference im(R) predicted by WDA2 and WDAO not seen clearly (in) at this scale.
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FIG. 5. Integrated fraction of counterions obtained using Monte Q#IG) and one constant-weighted-density appro@&tbA0) for
plasma parametdf,4q=0.5,1.0,2.0 and for ionic diamete(® a=0.4ry and(b) a=0.6r¢. In (b), the WDA2 curve is also shown for the case
of F2d= 2.0.

appear, which change the ion distribution considerablylayering as is observed for this ionic radius when salt is not
[56,57]. However, this effect can be overcome by the hardpresent. One should be aware that things will be more com-
core if the ions are large enough, renderings 1. Below we  plicated if one considers asymmetric séilt valence and
consider the systems from Table | with added salt. Two casesize or large ion sizes, since then more complicated effects
of Ng=10(10% of salf andNgs=N (100% of salt are studied like overcharging can occy#1,56-58.

to represent moderate and high amounts of salt. Since addi-
tion of salt ions into the cell would increase the packing
fraction, here we prefer to keep it constant, adjusting accord-
ingly the cell radiusR. This is partially justified by the fact In this paper we studied the effects of adding various local
that the ion distribution close to the colloid weakly dependsand nonlocal free-energy functionals to the PB free-energy
on the cell size for our system parameters. Figure 6 showinctional to include the effects of an ionic hard core. We
both the positive and negative charge density profiles obstarted from calculating a layer volume fractigg using the
tained using simulations, WDAQ, and PB theory for the sys-PB approximation, which gives a criterion for recognizing
tem withI",3=1.0 anda=0.4r, with 10% of salt. Due to the when size effects become relevant and the simple PB ap-
screening, the effect of electrostatic correlations is less proproach has to be modified. We tested this criterion for a
found than in the zero-salt case. The agreement between tkgstem consisting of a charged spherical colloid and its coun-
simulations and WDA is therefore improved at higher saltterions confined to a spherical cell, and studied a number of
concentrations and lower plasma parameter. The integratgshrameter combinations where the PB approximation fails.
charge profiles for several systems, employing our highest For including size correlations, four local and two nonlo-
plasma parametdr,4=2.0, are shown in Fig. 7. The WDA cal density-functional approximations were employed. The
captures the same trend in the charge distribution as providédcal theories were always found to overestimate the hard-
by the MC data. The presence of salt does not change theore effects, creating an exclusion region close to the colloid
for large ionic radii. Beyond a certain ionic radius, all the
considered LDA's diverge and produce meaningless results.
The failure of the LDA is also captured by the increasing
divergence between the LDA and MC contact densities,
which is seen when the ionic radius is increased, and the
absence of any layering effect in the LDA. Due to this ob-
servation, we note that the inclusion of the LDA correction

V. CONCLUSION

105}

108 ¢

107 ¢
N«(r)

10% into PB actuallyworsensthe agreement of PB with simula-
109 L tion results. In principle, a number of weighted density func-
; tionals[22,34,5] or other nonlocal strategi¢§9] could be
1010k used in order to study this problem. We demonstrated that a
' simple weighted-density approach for the excluded-volume
1ot 15 2 25 3 35 4 45 5 interaction was able to capture the main features of the ionic

r (units of rp) derjsity profile._ The intro_duc’;ions of a more sophisticated
weighted-density approximations such as the approach of

FIG. 6. Density profiles of positive and negative ions obtainedTarazonaet al. [34] improves the agreement with the simu-
using MC simulations, WDAO, and PB theory for the system with lation, but it does not bring any new physics to the problem.
I',q=1.0,a=0.4(, and 10% of salt. The number density is mea- If some salt is included, under certain parameters the main
sured in units of5>. effect is the increase of screening of the electrostatic corre-
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FIG. 7. Integrated fraction of counterions obtained ugmdvionte Carlo(MC) and(b) one constant-weighted-density appro@afDA0)
for different ion sizes at plasma paramelgg=2.0 and different amount of salNs=0, 10%, and 100% o). The sizes vary from top to
bottom asa=0.1ry, a=0.4ry, anda=0.6r,.

lations. Therefore, the system can be adequately described by N+Ng No g NNy
the PB approach supplemented with an excluded-volume V=-N —+ND, —+=
WDA. More complicated effects are expected to appear at - Il T il 2 i#] Iri _ri|
sufficiently high plasma parameters and higher salt concen- P NsNNGN 1 NsNstN ¢
trations. To treat those within density-functional theory, a += > -= > {
combination of hard-core and electrostatic correlations along 2 5 -l 2 5 Llni-r
the lines of Refs[22,51] will probably be required.
+g(|ri—rj|/a)], (A2)
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APPENDIX Ng,Ng Ng+N,Ng
) +qff, -7 /2
The canonical partition functiorZ of the colloid sur- 25 |fi-fl.| 2 7 |fi_fj| guri =1, '
rounded by its counterion in a cell model is given by (A3)
NN N gepdrdPpidir wherea=a/{.
z=| II1l o ——e P (AL In this form it becomes evident that appropriately scaled

3(N+Ng) 3N . . .
i=1 j=1 N TN+ No) ! thermal observables like the integrated charge deitsiga-

sured in units of¢3) or the pressurémeasured in units of
whereN=Z/v is the total number of counterions antigZs  kgT¢~°) are invariant under system changes which keep the
the total number of positive and negative ions of salt. Thenumber of counteriond\, the number of salt particlesys,
Hamiltonian H=7+V splits into kinetic and potential de- the rescaled colloid siz&=ry/¢, the rescaled ion radiu,
grees of freedom. In the classical description employed herand the volume fractiom) constant.
the kinetic partZ will contribute the usual factox=3N-5Ns to Poisson-Boltzmann theory shows the same invariance
the partition function, wherex is the thermal de Broglie property, as does the approximate density functional theory
wavelength. The potential energy can be expressed as  we are proposing in this paper.
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