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We investigate the effect of excluded-volume interactions on the electrolyte distribution around a charged
macroion. First, we introduce a criterion for determining when hard-core effects should be taken into account
beyond standard mean-field Poisson-BoltzmannsPBd theory. Next, we demonstrate that several commonly
proposed local-density-functional approaches for excluded-volume interactions cannot be used for this pur-
pose. Instead, we employ a nonlocal excess free energy by using a simple constant-weight approach. We
compare the ion distribution and osmotic pressure predicted by this theory with Monte Carlo simulations. They
agree very well for weakly developed correlations and give the correct layering effect for stronger ones. In all
investigated cases our simple weighted-density theory yields more realistic results than the standard PB ap-
proach, whereas all local density theories do not improve on the PB density profiles, but on the contrary,
deviate even more from the simulation results.
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I. INTRODUCTION

Understanding the behavior of charged macroions in so-
lution is an important problem in fundamental sciencef1g as
well as in industrial f2g and biological applicationsf3g.
Charged stabilized colloidal dispersions are present in paints,
inks, and pharmaceutical products and are used in the fabri-
cation of nanostructured materialsf4–6g. These systems
serve also as a primitive model for the crowded cellular en-
vironment that represents numerous biomacromolecules and
cellular polymersf7,8g. What all the applications above have
in common is that when a charged macroion is immersed in
an electrolyte solution, it is surrounded by counterions to
balance the surface charge. The charged macroion surface
along with the neutralizing diffuse layer of counterions is
usually referred to as the electric double layer, the under-
standing of which is crucial for describing the behavior of
such systems. For instance, the stability of colloidal disper-
sion depends on the distribution of small ions around the
colloid. The electrophoretic mobility of the solution also can
be rationalized in terms of the ion distributionf9–12g and
most of the electrochemical reactions occur in this interfacial
region f13g.

As a result, there has been a considerable effort to de-
scribe the density profile around the macroion for different
macroion geometries. The earliest theory that had significant
success was the Poisson-BoltzmannsPBd approach. Its ver-
sions for planar geometry, the so-called Gouy-Chapman
theory f14,15g, can be solved exactly. It also has an analyti-
cal solution for an infinitely long linear macroion confined to
a cylindrical cellf16,17g, whereas only a numerical solution

can be obtained in the case of a spherical geometry. The
major flaw of this mean-field approach is that it neglects all
correlations between the ions. For a long time, integral-
equation theories have been developed to adequately de-
scribe dense systems of electrolytes, and recently field theo-
ries have become very popular in calculating correlation
corrections to the mean field PB approach; see, e.g., Refs.
f3,18,19g for overviews. However, since the treatment of size
effects is mixed with the electrostatic correlations, in many
approaches it becomes difficult to identify the role of each
effect. And finally integral equation theories work well at
high densities when excluded-volume contributions are very
strong, whereas they are problematic in the low-density re-
gime.

It would therefore be desirable to have a theoretical
framework which retains the simplicity of the early attempts,
but also accommodates correlation effects—something that
can be done within density functional theories. It is possible
to rigorously rewrite the partition function of, say, a system
of charged colloids, as a density functionalf20g, in which the
contribution beyond the mean field is included as an additive
correlation correction to the free-energy density. The func-
tional form of this correction is unknown and one has to use
a reasonable ansatz for it. The spirit is very similar to the
fundamental problem of integral equations, where one also
has to make an educated guesssnamely, the closure relationd.
However, in the case of a functional this involves a free-
energy density expression rather than a relation between two-
and three-point functions. It thus relies on a different kind of
intuition and thus permits some complementary insight.

A number of density-functional prescriptions for taking
both size and electrostatic correlations into account have
been proposedf21–24g. These theories are able to reproduce
to some extent the density profile of charged systems. How-
ever, since they treat both size and electrostatic correlations
together, the origin of the result is not clear. Recently we
adopted a different approach. We studied systems of point-
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like counterionsstherefore no size effectsd and addressed the
question of when the electrostatic correlations become rel-
evant. For treating these correlations we proposed the
Debye-Hückel hole-cavity functionalf25,26g. This theory re-
lies on a Debye-Hückel treatment of the one-component
plasmasOCPd f27–29g, in which the short-distance failure of
linearization is overcome by postulating a correlation hole.
Since beyond a certain density the resulting OCP free-energy
density is a concave function of density, this favors the de-
velopment of inhomogeneities. In the pure OCP these are
balanced by the homogeneously charged background. How-
ever, if one uses the OCP free-energy density as a correlation
correction to the mean-field functional describing the double
layer at a charged surface, one has all the charge opposite to
the counterions located on that surface, rather than homoge-
neously distributed as a stabilizing background. The conse-
quence is that the double layer becomes unstable and all ions
collapse onto the surface, an effect which has been termed
“structural catastrophe”f30,31g. To prevent this effect we
introduced a spherical exclusion region where no back-
ground can be found. The prescription for finding the size of
such an exclusion serves both to keep the theory self-
consistent and to establish the range of validity of the PB
approach. Comparisons of the ionic charge distribution
around a charged cylinder and a charged sphere showed a
very good agreement with the simulations for both monova-
lent and trivalent counterionsf26g.

Having studied how to take into account the electrostatic
correlations, we address in this paper the relevance of
excluded-volume correlations. We present a validity criterion
for the PB approach by constructing a parameter whose
value approximately indicates when excluded-volume corre-
lations are expected to become relevant. We then test several
local density approaches that have been advocatedf32,33g,
demonstrating that they all fail to take the size correlations
into account and that they even lead to an instability of the
solution beyond a certain ion size. In order to circumvent
this, a weighted density functional based on a simplified
Tarazona approachf34–36g is introduced. Our results are
compared with Monte CarlosMCd simulations, showing very
good agreement for the cases of moderately developed hard-
core correlations and even for strongly electrostatically inter-
acting systems in both zero salt and nonzero salt cases.

The remainder of the paper is organized as follows. In
Sec. II we discuss validity of the PB approach for a colloidal
system with non-point-like counterions and show how the
size effect can be incorporated into the model. Details of the
used numerical methods are given in Sec. III. These are fol-
lowed by the results and discussions presented in Sec. IV,
and our conclusion in Sec. V.

II. SIZE CORRELATIONS WITHIN DENSITY-
FUNCTIONAL THEORY

Consider a spherical colloid of radiusrc and negative
chargeZ, which is located in the center of a spherical cell of
radiusRc. This cell represents a bulk colloidal solution with
colloid volume fractionf=src/Rcd3. The counterions are
taken as positively charged hard spheres of diametera and

valencev, andN=Z/v of them provide the neutrality of the
cell. The solvent is modeled as a uniform dielectric back-
ground of dielectric constante, and the strength of the elec-
trostatic interactions is defined by Bjerrum length

lB =
q2

4pe0ekBT
, s1d

whereq is the unit charge. In the nonzero salt case,Ns posi-
tive and Ns negative salt ions are also included. Here we
assume that all ions have the same size and valence as the
counterions. The average charge distribution is described by
local densitiesn−srd for the coions andn+srd for the counte-
rions and positive salt ions. These are defined forr0ø r øR,
where r0=rc+a/2 is the distance of closest approach be-
tween the macroion and particles andR=Rc−a/2 ssee Fig.
1d. Therefore,fe, the volume fraction of the electrolyte in
the cell confined betweenrc

3 andRc is given by

fe =
a3sN + 2Nsd
8sRc

3 − rc
3d

. s2d

The effective surface charge densitys should be defined in
terms ofr0 rather thanrc–i.e.,s=Z/ s4pr0

2d. This will be used
later when defining the plasma parameter of the system.

The central task of a density-functional theory is to derive
an analytical expression for the free-Helmholtz-energy func-
tional that upon minimization gives the density profiles of
the free ions in solution. Its simplest form is given by the
Poisson-Boltzmann functional: namely

FPB =E d3r„kBTn+sr dhlnfn+sr dl3g − 1j + kBTn−sr d

3hlnfn−sr dl3g − 1j + felsr d…, s3d

which includes the translational entropy of the ionssl is the
thermal de Broglie wavelengthd and all electrostatic interac-
tions represented byfelsr d. The electrostatic interactions
within the mean-field approximation are given by

FIG. 1. Colloidal cell model. The system is defined by five
independent parameters: number of counterions,N, number of salt
ions,Ns, and three characteristic sizesr0, R, anda measured in units
of lBv2. See the Appendix for more details.
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felsr d = vqfn+sr d − n−sr dgcsr d, s4d

wherecsr d is the total electrostatic potential created at posi-
tion sr d by the fixed macroion and all ions together. The
minimization of Eq.s3d with respect ton+sr d andn−sr d gives
the Boltzmann density distributions

n±sr d = n±
0e7bvqcsr d, s5d

where parametersn+
0 and n−

0 are defined by the charge neu-
trality condition. In spherical geometry, Eq.s5d together with
the Poisson equation

¹2csrd = −
4qvp

e
fn+srd − n−srdg s6d

and the boundary conditions atr =r0 and r =R comprises a
fully defined Poisson-Boltzmann problem. The problem with
this approach is that the ions are considered as point charges
in some average electric field and both electrostatic and
excluded-volume correlations between them are not taken
into account. When do these correlations matter? Comparing
the PB predictions to simulation results, one has found out
that, for pointlike ions, electrostatic correlations become rel-
evant when the plasma parameterG2d=ÎpslB

2v3 becomes
larger than 1f25,26,37–40g. Here we address the question
under what condition the excluded-volume effects become
significant. For a uniform hard-sphere liquid we know that
the radial distribution function changes from monotonically
decaying to nonmonotonic at volume fractions of the order
of f<0.2, which will be the reference volume fraction in
our further estimates. In the case of confined liquids, ions
tend to concentrate close to the surface and their concentra-
tion at the surface, especially in charged systems, may be
much higher than that in the bulkf41g. Therefore, to access
the hard-core effects one should consider the average volume
fraction within the first layer of counterions close to the col-
loid surface. Since the colloid is much larger than the ions, it
can be approximated assfor simplicity the salt is not in-
cludedd

fs =
pa2

6
E

0

a

nPBsxddx, s7d

wherenPBsxd,3=G2d
4 /ps2x̄G2d

2 +1d2 is the exact solution ob-
tained in the planar geometryf14,15,42g. Herex̄=x/,, where
,= lBv2. After integration we find that the volume fraction
close to the macroion is given by

fs =
â3G2d

4

3s2G2d
2 â + 1d

, s8d

where â;a/,. Then, for fs&0.2, there are only weakly
developed excluded-volume correlations, and the PB ap-
proximation should be still valid. For larger values offs we
expect to see some layering effects close to surfaces. This
criterion is strictly valid only for a planar geometry, but is
expected to approximately hold for sufficiently large spheri-
cal or cylindrical macroions where the curvature effects
s~1/Rd are negligible. An analogous formula which takes the
curvature into account can also be derived for a cylindrical

PB cell for which the contact density is known analytically.
Since electrostatic correlations were not taken into account,
we do not expect this simple analysis to hold forG2d*2.
Beyond this value, the force-distance curves between
charged plates cease to be monotonic, and beyondG2d
.2.45 attractions even between like charged macroions can
occur f37g. These effects are the results of correlations be-
tween different double layersslike, for instance, ion inter-
locking f38,43gd that are stronger than the size effects we are
describing here. Note that Eq.s8d is designed to give a limit
of validity of the mean-field approach. For high ionic radius
fs can become larger than 1, losing its relation to the actual
volume fraction in the system.

Correlations can be included in the PB model by adding
to the PB free energyFPB an excess free-energy term,

F = FPB + Fex. s9d

The excess free energyFex originates from internal interac-
tions within the system, and it is unknown. In principle, it
can account for both the hard-core repulsion and the electro-
static correlations. Since we want to test the excluded-
volume effects within the range of ionic strength in which
they overcome the electrostatic correlations, the latter will be
neglected within our approach.

There are a number of functionals which can be used to
include hard-core effects in uniform liquids of a given den-
sity n. Within the local density approximationsLDA d one
can choose one of these free-energy density expressions,
fexfng, and replace the uniform density by a local one so that
the total excess free energy reads

Fex= kBTE d3rnsrdfexfnsrdg. s10d

For our system we can takensrd=n+srd+n−srd which means
that the hard-core effects are treated identically for both posi-
tive and negative ions. The idea behind Eq.s10d is quite
simple. A particle atr is supposed to be affected by only the
particles around it, in a range given by the interaction. If the
range of the interparticle interaction is much smaller than the
typical length for variations innsrd, the system can be di-
vided into small subvolumes of nearly constant density and
each of them can be treated as part of a homogeneous sys-
tem. If we take ions as charged hard spheres, we can use the
free-energy density derived, for example, from the
Carnahan-StarlingsCSd equation of statef44g: namely

fCSffsrdg =
fsrdf4 − 3fsrdg

f1 − fsrdg2 , s11d

wherefsrd=pa3nsrd /6 is the volume fraction occupied by
the free ions. For denser liquids, the accuracy might be im-
proved by using the more precise virial expansion for the
Percus-Yevick theory for hard spheresf45g: namely,

fvirffsrdg = f4fsrd + 5fsrd2 + 6.12fsrd3 + 7.02fsrd4

+ 7.905fsrd5 + 9.4208fsrd6g. s12d

The last two expressions agree up to second order in the
local volume fractionfsrd.
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A simple form of Fex can also be derived from the free-
volume sfvd expression for a lattice gasf32,33g: namely,

Ffv1 = kBTE d3rF 1

a3 − nsrdGlnfs1 − nsrda3dg, s13d

wherea is the lattice spacing. With this form of functional
the excluded-volume effects can be explicitly incorporated
into the PB equation. However, its density expansion is dif-
ferent from that of a hard sphere. Another expression based
on the free-volume concept which can be found in Ref.f46g,

Ffv2 = − kBTE d3rnsrdlnS1 −
fsrd

2
D , s14d

gives lower-order density terms similar to Eqs.s11d ands12d.
The assumption of smooth variations ofnsrd being within

the characteristic range of hard-core interactions is only valid
for sufficiently small ionic diametersa. Consequently, as we
will show later, all the functionals above underestimate the
densities close to the colloid and completely fail to give the
correct density profile in the more interesting cases where
stronger variations innsrd are observed. Moreover, all ex-
pressions above have a singularity at a certain value of vol-
ume fraction. This reflects the fact that the bulk density can-
not exceed some upper limit. If a local density is higher than
that—for example, due to a charged surface—the local den-
sity functional does not converge and no density profile can
be obtained.

In order to circumvent the failure of the local density
approach, a number of weighted-density approaches
sWDA’sd have been proposedf34–36,47–50g. Initially the
new methods were developed for the description of neutral
hard-sphere solutions. Stimulated by the success of the WDA
for neutral systems, some rather complex and involved meth-
ods have already been proposed for charged suspensions
f21,22,51g. The prescription we have followed here is in the
spirit of the generalized van der Waals theory of Nordholm
and co-workersf50g. We represent the nonlocality of the
free-energy density functional through a coarse-grained den-
sity distribution n̄srd. The weighted density is a nonlocal
functional of the local densitynsrd. This can be pictured as a
mean density around pointr averaged over a volume related
to the range of the interactions. In this context, the local
density in Eq.s10d is replaced by some weighted density
n̄srd: namely,

Fex= kBTE d3rnsrdfexfn̄srdg, s15d

where

n̄srd =E d3r8wsur − r 8udnsur 8ud. s16d

The connection between the real system and the approxi-
mated functional comes from the weight functionwsur −r 8ud,
which should be chosen to give reasonable direct correlation
functions which are functional derivatives ofFexfn̄g. The
most important are the first- and second-order correlation
functions, defined as

cs1dsrd =
dFexfn̄g
dnsrd

,

cs2dsr,r8d =
d2Fexfn̄g

dnsrddnsr8d
. s17d

In the approach of Tarazonaet al. f35,36,47g one assumes
that the weight itself is also density dependent and can be
expanded in powers of the weighted density as follows:

wsur − r 8ud = w0srd + w1srdn̄srd + w2srdn̄srd2 + ¯ .

s18d

If we substitute this expression into the direct correlation
function in Eq.s17d, the resulting expansion can be set equal
to the direct correlation function of a uniform hard-sphere
fluid f52g. This way it is possible to obtain the weight func-
tion that up to second order is given byf35,36,47g

w0srd =
3

4pa3Qfa − rg, s19d

w1srd = F0.475 − 0.648
r

a
+ 0.113S r

a
D2G sr , ad

=F0.288
a

r
− 0.924 + 0.764

r

a
− 0.187S r

a
D2G

sa , r , 2ad

=0 sr . 2ad, s20d

w2srd =
5pa3

144
F6 − 12

r

a
+ 5S r

a
D2G sr , ad

=0 sr . ad. s21d

Since our aim is not to precisely describe the hard-sphere
effects but just to access their relevance, we will employ the
simplest form of the weight function that is the first term in
Eq. s18d or a constant weightf50g given by Eq.s19d. We will
refer to this weight as WDA0 whereas the weight defined by
Eqs. s19d–s21d will be called WDA2 and will be used to
validate our results. For a pure hard-sphere fluid, WDA0
reproduces the discontinuity in the direct correlation function
predicted by Percus and Yevickf46,53g. However, it overes-
timates the range of the correlation function, especially at
high densities, when compared to the density-dependent
weights f21,34g or to direction-dependent weights
f22,49,51g. Having this in mind, we will concentrate on the
systems for which size plays a relevant role but the differ-
ences between the constant weight and more sophisticated
approaches do not affect our main conclusions.

Measuring all lengths in units of,= lBv2 reveals that the
full partition function of our cell model depends on five sys-
tem parameters. The observables—for example, the reduced
density profilen̂srd=nsrd,3—remain constant under rescal-
ing which does not change the following quantities: the num-
ber of counterions,N=Z/v, the number of salt ions,Ns, the
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reduced distance of closest approach,r̂0=r0/,, the r0/R ra-
tio, and the reduced ion diameterâ=a/, ssee the Appendixd.
The same holds for PB theory and is also true for our WDA
theory. For the WDA it implies that both the WDA free-
energy correction and the weight function have to obey this
restriction.

III. NUMERICAL METHODS

In this section we give details of the numerical methods
used to study the cell system described in Sec. II. Three
different ways were employed to find the ion distribution in
the cell. The first one was a direct Monte Carlo simulation of
the cell model which gave us reference data to test the the-
oretical results. The density profile minimizing a given free-
energy functional was obtained using numerical iteration un-
til it converged to the equilibrium charge distribution.
Another way of minimizing the functional was by Monte
Carlo sampling. Some technical details of these three meth-
ods are summarized below.

A. Monte Carlo simulation

Within this approach we simulate the cell model exactly
as it is—all ions are taken as charged hard spheres of diam-
etera confined between two spherical shells of radiirc and
Rc. To gather the statistics of charge distribution the ions are
moved around the cell and a single-ion move is either ac-
cepted or rejected according to the usual Metropolis prob-
ability:

p = minf1,exps− bDEdg, s22d

whereDE is the difference between the system internal en-
ergy after and before the move. Since the density profile is
highly anisotropic, a combination of two types of moves was
found to improve the efficiency of the sampling. An ion was
either inserted at a random position in the cell or randomly
displaced within a cube centered at its current position. The
former allowed for efficient exploration of low-density re-
gions, whereas the latter proved to be efficient close to the
colloid where a successful insertion of an ion could be a rare
event due to the high packing fraction. The frequency of
using one or the other move as well as the displacement
range were adjusted to give an about 50% acceptance rate.

B. Iterative functional minimization

When minimizing a functional containing a nonzero cor-
relation term, Eq.s5d becomes dependent on the excess
chemical potential

m±
exsrd =

dFexfnsrdg
dn±srd

s23d

and reads

n±srd = n±
0e7bvqcsrd−bm±

exsrd. s24d

Once the expressions form±
ex are derived for a given func-

tional, we can find the ion distribution which satisfies both
Poisson equation and Eq.s24d. Integrating the Poisson equa-

tion over a spherical shell of radiusr and using the Gauss
theorem, an integro-differential equation for the electric field
Esrd can be obtained. Consequently, the optimum density
profile can be obtained from the numerical iteration of this
equation until convergence is achieved.

C. Monte Carlo functional minimization

Within this approach the ion position is described only by
its distance from the colloid,r, and this uniquely defines the
density distributionnsrd. Each MC step consists of moving
an ion to a new trial positionr0, r ,R. This move is either
accepted or rejected with probabilityf54g

p = minf1,exps− bDFdg, s25d

whereDF is the free energy difference after and before the
move and it is explicitly given by the functional we mini-
mize. This method was found to be more stable and worked
much faster than the iterative procedure, though the final
result did not depend on the numerical approach used.

IV. RESULTS AND DISCUSSION

In this section we compare how well the different density-
functional approaches described in Sec. II capture the
excluded-volume interactions. First, we apply numerical
techniques described in Sec. III to two colloidal systems al-
ready studied in the literaturef33g. Then we perform a sys-
tematic analysis of hard-core effects by investigating a num-
ber of different systems with and without added salt.

We start from considering two salt-free systems which
were also used inf33g to study the excluded-volume effect in
colloidal solutions. In both systemsr0=50 Å, R=100 Å, a
=10 Å, andlb=7 Å. The number of monovalent ions is dif-
ferent, and it isN=200 in systemsad andN=500 in system
sbd. Note that already for 200 ions some packing effects are
expected to be seen becausefs=0.25. Figure 2 shows the ion
density distribution close to the colloid obtained using differ-
ent approaches for bothsad andsbd. Comparison between the
PB and the MC curves for systemsad reveals that hard-core
repulsion decreases condensation by pushing ions away from
the colloid. This effect is captured well by the WDA,
whereas it is significantly overestimated by all LDA’s—the
predicted contact densities are too low. The highest packing
fraction achieved in LDA calculations for systemsad was
below the critical value and the equations converged.

In the case of 500 ions, the LDA with functional given by
Eq. s13d was found to be numerically unstable. The iterative
functional minimization failed to converge, while some con-
vergence could be still achieved by explicitly limiting the
highest density ata−3 in the MC sampling of the functional.
The result, however, depended on the number of bins and
therefore was not physical. A plateau close to the colloid, as
seen inf33g, was observed only for relatively large bin sizes,
while smaller bins resulted in a sawlike density profilesnot
shown hered. The other LDA’s, while still converging, over-
estimated hard-core effects and also resulted in unphysical
profiles. Moreover, all local approaches missed the layering
clearly captured by WDA0 and observed in simulations at
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distancea from the colloidal surfacefFig. 2sbdg.
Below we consider a model system in which parameters

r0 and R=5r0 are kept fixed, whereas the ion size and the
Bjerrum length are varied. The cell containingN=100
monovalent ions of size ranging between 0.1r0øaø0.8r0 is
studied at four Bjerrum lengths 0.1r0, 0.2r0, 0.3r0, and 0.4r0.
These correspond to the plasma parameter 0.5øG2dø2.0
which enables us to investigate hard-core effects in systems
with weak, moderate, and strong electrostatic correlations.
The parameterfs calculated for each of these 32 systems and
given in Table I predicts that, at all Bjerrum lengths, the size
correlations are expected to be seen for ion sizesaù0.3r0,
wherefs is already greater than 0.2.

The Monte Carlo data show that, indeed, the ion density
profile is concave fora=0.1r0 and a=0.2r0 but develops a
convex region at a distance abouta from the colloid surface
for larger ion sizes at all four Bjerrum lengths. This indicates
some packing taking place which is well captured by ourfs
criterion. Figure 3 shows both the reference Monte Carlo and
WDA0 density profiles calculated for different ion sizes at
fixed Bjerrum lengthlB=0.2r0 sG2d=1.0d. The development
of layering with increasing the ion size is well captured by
the nonlocal-functional approach, whereas none of the
LDA’s exhibits any layering and therefore are not shown in
Fig. 3.

Another way of checking how well correlations are cap-
tured by a particular excess free-energy functional is to com-

pute the osmotic pressure. In real systems this pressure also
depends on correlations between ions of different cells,
something which is not taken into account within the cell
model approximation. So by pressure we refer to the pres-
sure exerted on the rigid wall atr =R of our cell model.
Within the simulations, the pressure is givenf42g by the
contact density atr =R:

P = kBTnsRd. s26d

For the density-functional approach, this exact expression
should be correctedf55g to recover the free-energy func-
tional after integrating pressure over the volume. The correc-
tion term is generally small, and for simplicity we will di-
rectly compare contact densities predicted by different
methods. Figure 4 shows both the colloid contact density
nsr0d and boundary densitynsRd given by the Monte Carlo
simulations and different local and nonlocal density ap-
proaches for systems at fixed Bjerrum lengthlB=0.1r0 sG2d

=0.5d as a function of the ionic diametera. The colloid con-
tact density is informative of how well a certain method
works at the most packed region of the system and can also
be related to the pressure. Figure 4sbd shows that the local
approaches underestimatensr0d at high ionic radius when
compared to the simulations. We found that even for small
ionic sizes the PB density profile was closer to the MC ref-
erence data than the results of any of the locally “improved”

FIG. 2. Ion distribution close to the colloid surface measured in systems withr0=50 Å, R=100 Å,a=10 Å, andlB=7 Å and containing
sad N=200 andsbd N=500 monovalent ionssunits ofnsrd are Å−3d. Each curve corresponds to a particular method used: MC is the result of
the Monte Carlo simulation;FCS, Fvir, Ffv1, and Ffv2 are obtained using the LDA with a form of the excess free energy given by Eqs.
s11d–s14d, correspondingly; WDA0 is the constant-weight curve and PB is the numerical solution of PB equation without any hard-core
corrections.

TABLE I. Parameterfs of different ionic sizesscolumnsd, Bjerrumsrowsd lengths, and plasma parameter
srowsd. Both Bjerrum lengthslB and ion sizesa are given in units ofr0. Packing effects are expected to be
seen in those systems for whichfs.0.2. Unrealistically high values offs observed for large ions indicate
inapplicability of PB theory and failure of the LDA for these systems.

lB/ r0 sG2dd↓ a/ r0→ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 s0.5d 0.01 0.08 0.23 0.44 0.74 1.13 1.59 2.13

0.2 s1.0d 0.02 0.11 0.28 0.53 0.87 1.29 1.79 2.37

0.3 s1.5d 0.03 0.13 0.31 0.57 0.92 1.35 1.86 2.46

0.4 s2.0d 0.03 0.13 0.32 0.59 0.95 1.38 1.91 2.51
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functionals. Moreover, the limitation of the local approach is
illustrated by the failure of the LDA’s to converge at largea
sno data are shown for large ionsd. Both WDA’s we used here
give consistent results when compared to MC simulations.

Now, we concentrate on the case of relatively large ions
of diametersaù0.4r0 for which layering is clearly observed.
According to thefs criterion, the density profiles of such
systems should deviate from PB theory and the hard-core
interactions can be even more significant than the electrostat-
ics in some cases. Figure 5 shows the integrated ion fraction

Psrd =
1

N
E

r0

r

dr4pr2nsrd s27d

for systems with ionic diameters fixed atsad a=0.4r0 andsbd
a=0.6r0 for plasma parameterG2d=0.5, 1.0, and 2.0. Clearly,
a larger plasma parameter leads to an increased condensation
sthe curves are shifted upd—an effect which is governed by
the electrostatics and also present in PB theory. One could
expect that for highG2d electrostatic correlations would be a

dominant effectf26g, and significant deviations to PB theory
and also to our WDA corrected DFT should arise due to
electrostatic correlations, which we did not account for.
However, under the investigated circumstances, the ionic
size plays a more relevant role. The hard-core effects lead to
packing effects that overcompensate the electrostatic corre-
lations. Fora=0.4r0, the density profiles are well captured
by WDA0, which is always much closer to the MC data than
to the PB resultsnot shown hered. However, fora=0.6r0, the
structure of packing becomes important atG2d=2.0. For this
system, the WDA2 weight improves the result, showing that
the deviation between the simulations and the constant-
weight WDA0 is not due to the electrostatic correlations but
rather to hard-core effects. Beyond this point a more sophis-
ticated functional should be used to capture the local pack-
ing.

In principle, the addition of salt can lead to new correla-
tions due to ion-ion correlations and screening. For high
electrostatic salt couplings,Gs=, /d, whered is the distance
of closest approach of ion and coion, ion clusters can also

FIG. 3. Ion distribution close to the colloid surface measured in systems with plasma parameterG2d=1.0. Oddsad and evensbd ionic
diameters are shown separately for sake of clarity. Only WDA0 curves are marked while all MC curves are presented as solid lines and can
be identified by the corresponding closest dashed WDA0 curve. All distances are measured in ionic diameters, so the formation of the second
layer of counterions is always expected to be around 1. The units of number density arer0

−3.

FIG. 4. Contact densitysad nsr0d and boundary densitysbd nsRd predicted for systems withG2d=0.5 by different methods as a function
of ionic diametersthe number density is measured in units ofr0

−3d. All theories ata=0 are identical to PB theory, which slightly underes-
timates the contact density due to ignoring electrostatic correlations. This effect reduces as the ion size increases. The legend is organized
similar to that of Fig. 2 with one more line WDA2 corresponding to the weight by Tarazona given by Eqs.s19d–s21d. There is a slight
positive difference innsRd predicted by WDA2 and WDA0 not seen clearly insbd at this scale.
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appear, which change the ion distribution considerably
f56,57g. However, this effect can be overcome by the hard
core if the ions are large enough, renderingGs&1. Below we
consider the systems from Table I with added salt. Two cases
of Ns=10 s10% of saltd andNs=N s100% of saltd are studied
to represent moderate and high amounts of salt. Since addi-
tion of salt ions into the cell would increase the packing
fraction, here we prefer to keep it constant, adjusting accord-
ingly the cell radiusR. This is partially justified by the fact
that the ion distribution close to the colloid weakly depends
on the cell size for our system parameters. Figure 6 shows
both the positive and negative charge density profiles ob-
tained using simulations, WDA0, and PB theory for the sys-
tem with G2d=1.0 anda=0.4r0 with 10% of salt. Due to the
screening, the effect of electrostatic correlations is less pro-
found than in the zero-salt case. The agreement between the
simulations and WDA is therefore improved at higher salt
concentrations and lower plasma parameter. The integrated
charge profiles for several systems, employing our highest
plasma parameterG2d=2.0, are shown in Fig. 7. The WDA
captures the same trend in the charge distribution as provided
by the MC data. The presence of salt does not change the

layering as is observed for this ionic radius when salt is not
present. One should be aware that things will be more com-
plicated if one considers asymmetric saltsin valence and
sized or large ion sizes, since then more complicated effects
like overcharging can occurf41,56–58g.

V. CONCLUSION

In this paper we studied the effects of adding various local
and nonlocal free-energy functionals to the PB free-energy
functional to include the effects of an ionic hard core. We
started from calculating a layer volume fractionfs using the
PB approximation, which gives a criterion for recognizing
when size effects become relevant and the simple PB ap-
proach has to be modified. We tested this criterion for a
system consisting of a charged spherical colloid and its coun-
terions confined to a spherical cell, and studied a number of
parameter combinations where the PB approximation fails.

For including size correlations, four local and two nonlo-
cal density-functional approximations were employed. The
local theories were always found to overestimate the hard-
core effects, creating an exclusion region close to the colloid
for large ionic radii. Beyond a certain ionic radius, all the
considered LDA’s diverge and produce meaningless results.
The failure of the LDA is also captured by the increasing
divergence between the LDA and MC contact densities,
which is seen when the ionic radius is increased, and the
absence of any layering effect in the LDA. Due to this ob-
servation, we note that the inclusion of the LDA correction
into PB actuallyworsensthe agreement of PB with simula-
tion results. In principle, a number of weighted density func-
tionals f22,34,51g or other nonlocal strategiesf59g could be
used in order to study this problem. We demonstrated that a
simple weighted-density approach for the excluded-volume
interaction was able to capture the main features of the ionic
density profile. The introductions of a more sophisticated
weighted-density approximations such as the approach of
Tarazonaet al. f34g improves the agreement with the simu-
lation, but it does not bring any new physics to the problem.
If some salt is included, under certain parameters the main
effect is the increase of screening of the electrostatic corre-

FIG. 6. Density profiles of positive and negative ions obtained
using MC simulations, WDA0, and PB theory for the system with
G2d=1.0, a=0.4r0, and 10% of salt. The number density is mea-
sured in units ofr0

−3.

FIG. 5. Integrated fraction of counterions obtained using Monte CarlosMCd and one constant-weighted-density approachsWDA0d for
plasma parameterG2d=0.5,1.0,2.0 and for ionic diameterssad a=0.4r0 andsbd a=0.6r0. In sbd, the WDA2 curve is also shown for the case
of G2d=2.0.

ANTYPOV, BARBOSA, AND HOLM PHYSICAL REVIEW E71, 061106s2005d

061106-8



lations. Therefore, the system can be adequately described by
the PB approach supplemented with an excluded-volume
WDA. More complicated effects are expected to appear at
sufficiently high plasma parameters and higher salt concen-
trations. To treat those within density-functional theory, a
combination of hard-core and electrostatic correlations along
the lines of Refs.f22,51g will probably be required.
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APPENDIX

The canonical partition functionZ of the colloid sur-
rounded by its counterion in a cell model is given by

Z =E p
i=1

N+Ns

p
j=1

Ns d3pid
3r id

3pjd
3r j

h3sN+Nsdh3NssN + Nsd!Ns!
e−bH, sA1d

whereN=Z/v is the total number of counterions and 2Ns is
the total number of positive and negative ions of salt. The
Hamiltonian H=T+V splits into kinetic and potential de-
grees of freedom. In the classical description employed here
the kinetic partT will contribute the usual factorl−3N−6Ns to
the partition function, wherel is the thermal de Broglie
wavelength. The potential energy can be expressed as

V = − N o
i

N+Ns ,

ur iu
+ No

i

Ns ,

ur iu
+

1

2 o
iÞ j

Ns,Ns ,

ur i − r ju

+
1

2 o
iÞ j

Ns+N,Ns+N
,

ur i − r ju
−

1

2 o
iÞ j

Ns,Ns+N F ,

ur i − r ju

+ gsur i − r ju/adG , sA2d

where the first two terms are related to the electrostatic in-
teractions and the last is responsible for the hard-core repul-
sion. The specific form of this term is not relevant here. After
rescaling all length by,—i.e., introducingr̂ªr /,—the total
partition function can be rewritten as

Z =
1

sN + Nsd!Ns!
S ,

l
D3N+6NsE

r̂0

r̂0/f1/3

p
k

N+Ns

p
l

Ns E d3r̂kd
3r̂ l

3expH− N o
i

N+Ns 1

ur̂ iu
+ No

i

Ns 1

ur̂ iu
+

1

2 o
iÞ j

Ns+N,Ns+N
1

ur̂ i − r̂ ju

+
1

2 o
iÞ j

Ns,Ns 1

ur̂ i − r̂ ju
−

1

2 o
iÞ j

Ns+N,NsF 1

ur̂ i − r̂ ju
+ gsur̂ i − r̂ ju/âdGJ ,

sA3d

whereâ=a/,.
In this form it becomes evident that appropriately scaled

thermal observables like the integrated charge densitysmea-
sured in units of,−3d or the pressuresmeasured in units of
kBT,−3d are invariant under system changes which keep the
number of counterions,N, the number of salt particles,Ns,
the rescaled colloid sizer̂0=r0/,, the rescaled ion radiusâ,
and the volume fractionf constant.

Poisson-Boltzmann theory shows the same invariance
property, as does the approximate density functional theory
we are proposing in this paper.

FIG. 7. Integrated fraction of counterions obtained usingsad Monte CarlosMCd andsbd one constant-weighted-density approachsWDA0d
for different ion sizes at plasma parameterG2d=2.0 and different amount of saltsNs=0, 10%, and 100% ofNd. The sizes vary from top to
bottom asa=0.1r0, a=0.4r0, anda=0.6r0.
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